Journal of Organometallic Chemistry, 134 (1977) 219–227 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STEREOCHEMICALLY NONRIGID SIX-COORDINATE METAL CARBONYL COMPLEXES

IV *. A ¹³C NMR INVESTIGATION OF *cis*-M(CO)₄X₂ AND M'(CO)₅X DERIVATIVES (M = Fe, Ru, Os; M' = Mn, Re; X = H, I)

L. VANCEA and W.A.G. GRAHAM *

Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada) (Received January 17th, 1977)

Summary

The ¹³C NMR spectra of *cis*-M(CO)₄X₂ and M'(CO)₅X (M = Fe, Ru, Os; M' = Mn, Re; X = H, I) and *cis*-Os(CO)₄Me₂ are reported. Variable temperature spectra demonstrated the stereochemical nonrigidity of *cis*-Fe(CO)₄H₂ and the stereochemical rigidity of the rest. The carbonyl averaging process in *cis*-Fe(CO)₄-H₂ and the H_2 occurs without ligand dissociation. Improved syntheses of some of these derivatives are also given.

Introduction

Over the past seven years there has been an increasing number of reports on the polytopal rearrangement of six-coordinate complexes in solution. Among the most studied were compounds of the type ML_4H_2 , where M = Fe, Ru; L = phosphine, phosphite [1-5]. The presence of six ligand nuclei with spin 1/2 enabled a detailed analysis of NMR line shapes and led to the suggestion of the "tetrahedral jump" mechanism for the rearrangement of such complexes.

Recent ¹³C NMR studies from this laboratory demonstrated the polytopal rearrangement in another series of compounds of the type $M(CO)_4(ER_3)_2$ (M = Fe, Ru, Os; E = Si, Ge, Sn, Pb; R = organic group, Cl) [6-8]. This rearrangement, which involves a *cis*—trans isomerization [7], has been shown to be more facile or iron derivatives than either the ruthenium and osmium derivatives.

In order to establish the degree to which the cis-M(CO)₄(ER₃)₂ complexes are unique, we have extended our ¹³C NMR investigations to M(CO)₄X₂ and M'(CO)₅X derivatives (M = Fe, Ru, Os; M' = Mn, Re; X = H, I) and to Os(CO)₄Me₂. The results of this study are presented here. A brief reference to the ¹³C NMR spectrum of cis-Os(CO)₄H₂ has previously been made [9].

* For part III see ref. 8.

Results and discussion

The cis or trans geometry of $M(CO)_4X_2$ derivatives in solution may be rigorously established by ¹³C NMR provided the compounds are stereochemically rigid on the NMR time scale. For a cis- $M(CO)_4X_2$ derivative two ¹³CO resonances of equal intensity are expected; only one ¹³CO resonance is expected for a trans- $M(CO)_4X_2$ derivative. Two resonances were observed for cis- $M(CO)_4X_2$ (M =Fe, Ru, Os; X = H, I) and cis-Os(CO)_4Me₂, with the single exception of Fe(CO)₄H₂ noted below. The ¹³C chemical shift values are given in Table 1, and will be discussed below.

Assignment of ¹³CO resonances

The two ¹³CO resonances of cis-M(CO)₄H₂ (M = Ru, Os) may be unambiguously assigned from the ¹H-coupled ¹³C NMR spectra. These showed an A₂X pattern at lower field for the axial carbonyls and an AA'X pattern for the equatorial carbonyls at higher field *. Thus, Fig. 1 shows the ¹H-decoupled and ¹H-coupled ¹³C NMR spectra of cis-Os(CO)₄H₂. The positions of the carbonyl resonances are in agreement with previous findings in the cis-M(CO)₄(ER₃)₂ series [6-8], where, for the great majority of cases, the ¹³C resonance of the carbonyl trans to the one-electron donor ligand was at higher field.

Assignment of the ¹³CO resonances of cis-M(CO)₄I₂ (M = Fe, Ru, Os) and cis-Os(CO)₄Me₂ was assumed to be the same as for the hydrido species. The coupling constant method of assigning ¹³CO resonances failed for cis-Os(CO)₄Me₂ because the ³J(¹H—¹³CO) coupling was too small to be resolved (the half-widths of the carbonyl resonances at 177.7 and 170.6 ppm were 7.3 and 5.7 Hz, respectively, in the ¹H-coupled spectrum; the corresponding hald-widths in the ¹H-decoupled spectrum were 2.6 and 2.5 Hz).

On the other hand, for M'(CO)₅X derivatives, the assignment is straightforward as two ¹³CO resonances of relative intensity 4/1, due to the radial and axial carbonyls, are expected. This was observed for Re(CO)₅H (Table 1). However, the ¹³C NMR spectra of Mn(CO)₅H, Mn(CO)₅I, and Re(CO)₅I showed only one broad peak at room temperature. This is due to the quadrupole moment of the ⁵⁵Mn, ¹³⁵Re, and ¹⁸⁷Re isotopes, which can potentially broaden the signals of carbon atoms bound directly to them [10]. The radial and axial ¹³CO resonances can nevertheless be resolved by "thermal decoupling", a method long known in ¹¹B NMR [11], but only recently applied to ¹³C NMR [10]. Thus, Fig. 2 shows the variable temperature ¹³C NMR spectra of ¹³CO-enriched Re(CO)₅I. At room temperature the half-width of the ¹³CO resonance is 7 Hz. Lowering the temperature causes a dramatic narrowing of this resonance, to 3.6 Hz at -50° C, such that the ¹³CO signal due to the axial carbonyl may be clearly resolved.

It is, of course, the greater viscosity of the solution at lower temperatures that is the basis of "thermal decoupling", so that the choice of solvent is important **. For example, we determined the ¹³C NMR spectrum of $Mn(CO)_5H$ in CD_2Cl_2 at $-70^{\circ}C$, which was no better (as far as the half-width of the car-

^{*} As is usual with such systems, axial and equatorial CO groups are defined so that the central metal atom and the non-carbonyl ligands lie in the equatorial plane.

^{**} Helpful discussions with Dr. J. Takats on this point are gratefully acknowledged.

ABLE 1

ompound	CO _{ax}	CO _{eq}	Coup	ling constants ^b	Temperature (K)
e(CQ) ₄ H ₂	205.3		9 c		193 d
$u(CO)_4H_2$	192.5	190.1			223
	192.6	190.4		7	223 ^e
5(CO)4H2	173.5	171.6		8	300 f
e(CO) ₄ I ₂	204.6	198.5			298
	204.8	198.5			303 ^g
u(CO)4I2	178.2	177.8		4 ^I	303 ^g
5(CO)412	159.2	156.4			303 ^g
s(CO) Mea h	177.7	170.6			303
ln(CO)sH	210.8	211.4	7	14.	193 ⁱ
fn(CO)eI	j	205.4			183
e(CO)=H	182.7	183.2	8	7	293
e(CO)5I	176.1	176.5			223 ^k

³C CHEMICAL SHIFTS AND ¹³C¹H COUPLING CONSTANTS IN cis-M(CO)₄X₂ AND M'(CO)₅X ERIVATIVES ^a

Chemical shifts in ppm downfield from TMS; coupling constants in Hz. Solvent is toluene- d_8 except as oted. For cis-M(CO)₄X₂ derivatives, axial and equatorial groups defined so that the central metal atom ad the two X ligands lie in the equatorial plane. For M'(CO)₅X derivatives, the axial CO is the one *trans* > X. Assignment of ¹³CO resonances of cis-M(CO)₄I₂ and cis-Os(CO)₄Me₂ is tentative only (see text).

The coupling constant given for cis-M(CO)₄H₂ derivatives represents ${}^{2}J({}^{1}H-{}^{13}CO_{ax})$, see text. The vo coupling constants given for $M'(CO)_{5}H$ represent ${}^{2}J({}^{1}H-{}^{13}CO_{ax})$ and ${}^{2}J({}^{1}H-{}^{13}CO_{eq})$, respectively. Average value of the three coupling constants ${}^{2}J({}^{1}H-{}^{13}CO_{ax})$, ${}^{2}J({}^{1}H-{}^{13}CO_{eq})$, and ${}^{2}J({}^{1}H_{trans}-{}^{3}CO_{eq})$, see text. Solvent methylcyclohexane- d_{14} , temperature 223 K. d CD₂Cl₂/CF₂HCl (3/1) solvent. Methylcyclohexane- d_{14} solvent. f Benzene- d_6 /heptane (1/3) or toluene- d_8 solvent. ${}^{1}H$ NMR spectrum i toluene- d_8 afforded ${}^{1}J({}^{189}Os-{}^{1}H)$ 40.5 Hz. f CD₂Cl₂ colvent. h Chemical shift of ${}^{13}CH_3 - 7.6$ ppm; $J({}^{1}H-{}^{13}CH_3)$ 131 Hz. i Toluene- d_8/CD_2Cl_2 (3/1) solvent. j Resonance not observed, see text. k Toluene- g/Cl_2 (1/1) solvent. ${}^{l}2J({}^{13}CO_{ax}-{}^{13}CO_{eq})$; ref. 19.

g. 1. ¹H-decoupled (top) and ¹H-coupled ¹³C NMR spectra of cis-Os(CO)₄H₂ in benzene- d_6 /heptane /3). Numbers referring to the 171.55 ppm resonance indicate spacings between the apparent doublet of publets. They would represent coupling constants only if J(H-H') = 0, or nearly so [17], and this has not ion shown.

222

Fig. 2. Variable temperature ${}^{13}C$ NMR spectra (carbonyl portion) of Re(CO)₅I in toluene-dg (top spectrum) and toluene-dg/CD₂Cl₂ (1/1).

bonyl resonance was concerned) than the spectrum of the same compound at -30° C in toluene- d_s (half-width 20 Hz). The resonances due to the radial and axial carbonyls of ¹³CO-enriched Mn(CO)₅H were resolved at -80° C in toluene- $d_s/\text{CD}_2\text{Cl}_2$ (3/1). The half-width of the radial carbonyl resonance was 6.2 Hz.

In all $M'(CO)_5 X$ derivatives studied here, the ¹³C resonance of the axial carbonyl (*trans* to the one-electron donor) is at higher field than the ¹³C resonance of the radial carbonyls. This was also found for other pentacarbonylmanganese and pentacarbonylrhenium derivatives which have been investigated [10,12,13].

The axial ¹³CO resonance of $Mn(CO)_5I$ was not observed despite a careful search. Only one ¹³CO peak was observed in toluene- d_8 at $-90^{\circ}C$ (half-width 6.7 Hz) or in CF₂HCl at $-110^{\circ}C$ (half-width 1.5 Hz). It seems likely that the axial and radial carbonyl resonances are accidently degenerate in this compound. The chemical shift difference between radial and axial ¹³CO resonances decreases on going from Re(CO)₅H to Re(CO)₅I (Table 1), and the same may also apply to Mn(CO)₅H and Mn(CO)₅I. We do not consider it likely that the single resonance is the result of rapid axial-radial carbonyl averaging, in view of the rigidity of the homologs.

Carbon-13 chemical shifts

The ¹³C chemical shift values are given in Table 1. The ¹³C NMR of $Fe(CO)_4$ -

 H_2 at -80° C shows only one resonance rather than the expected two resonances. This aspect will be fully discussed below.

The ¹³CO resonances are shifted upfield on descending a group of the periodic table or on going to the right in a given period [12]. Thus, the order of shielding is Fe < Ru < Os, Mn < Re, Mn < Fe, and Re < Os.

¹³CO chemical shifts are greatly influenced by the substituent X. For example, in cis-Os(CO)₄Me₂, the ¹³CO resonances are shifted upfield by 5 and 12 ppm as compared to Os(CO)₅ *. The corresponding upfield shifts in cis-Os(CO)₄H₂ are 9 and 11 ppm, while in cis-Os(CO)₄I₂, the upfield shifts are even more pronounced, 23 and 26 ppm.

The upfield shifts observed on replacing a hydrogen by iodine in ruthenium and osmium derivatives were between 12–15 ppm. This effect was less marked for manganese and rhenium derivatives, where the upfield shift was 5–7 ppm.

It is interesting to note that the chemical shift difference between axial and equatorial ¹³CO resonances in the iron, ruthenium, and osmium derivatives varied from 0.4 to 7 ppm. However, the corresponding difference between radial and axial ¹³CO resonances in manganese and rhenium derivatives was considerably smaller (0.4-0.6 ppm).

The ¹³C NMR of Mn(CO)₅H has been determined before [14], and two very broad resonances (width of approximately 75 Hz) at 0.1 (intensity 1) and -17.7ppm (intensity 4) with respect to carbon disulfide were reported. On the TMS scale [16], these values would correspond to 192.7 and 210.5 ppm, respectively. Although the chemical shift of the radial carbonyl resonance is fairly close to the value given in Table 1, we believe that the chemical shift of the axial carbonyl reported by these authors [14] is in error. The half width of our radial ¹³CO resonance at -80° C was 6.2 Hz, just sufficient to resolve the axial ¹³CO resonance.

Carbon-13 coupling constants

The ¹H—¹³C coupling constants observed in cis-M(CO)₄H₂ and M'(CO)₅H derivatives (M = Fe, Ru, Os; M' = Mn, Re) are given in Table 1. As described previously, the ¹H-coupled ¹³C NMR spectrum of a cis-M(CO)₄H₂ derivative is expected to show an A₂X system for the axial carbonyls and an AA'X system for the equatorial carbonyls. This was observed for cis-Ru(CO)₄H₂ and cis-Os(CO)₄H₂ (Fig. 1). Analysis of an AA'X system is complex [17,18] and has not been attempted here. For this reason, Table 1 lists only ²J(¹H—¹³CO_{ax}) values for these derivatives.

Analysis of the ¹³C NMR spectrum of ¹³CO-enriched *cis*-Ru(CO)₄I₂ (AB system at an early stage of enrichment) afforded ${}^{2}J({}^{13}CO_{ax}-{}^{13}CO_{eq})$ 4 Hz [19].

For M'(CO)₅H derivatives, the cis and trans ${}^{2}J({}^{1}H{}^{-13}CO)$ coupling constants were readily observed in the ${}^{1}H$ -coupled ${}^{13}C$ NMR spectrum of Re(CO)₅H, although very low temperature and ${}^{13}C$ enrichment were required to resolve these couplings in Mn(CO)₅H. The ${}^{1}H{}^{-13}CO$ coupling constants for Mn(CO)₅H were reported previously from the ${}^{1}H$ NMR spectrum [15], and we confirm these values. As noted earlier [15] the cis coupling in Mn(CO)₅H was larger than the trans coupling. However, the situation reverses for Re(CO)₅H, and the trans coupling is slightly larger than the cis coupling.

^{*} The ¹³C NMR of Os(CO)₅ in toluene-d₈ shows one resonance at 182.7 ppm down to -70°C. Presumably, the molecule is stereochemically nonrigid.

Stereochemical nonrigidity

Although the infrared [20,21] and Raman [22] spectra of $Fe(CO)_4H_2$ indicate *cis* geometry in solution, the ¹H-decoupled ¹³C NMR spectrum of this compound in CD_2Cl_2/CF_2HCl (3/1) showed a single ¹³CO resonance at -80° C, with a halfwidth of 3 Hz. At -100° C, the spectrum showed a very broad, flat peak, with a half-width of 16 Hz (Fig. 3), which could be due to the two resonances of *cis*-Fe(CO)₄H₂. This suggests a carbonyl averaging process which is rapid on the NMR time scale at -80° C. Spectra at lower temperatures could not be obtained because of the reduced solubility of the compound. The ¹H-coupled ¹³C NMR spectrum of Fe(CO)₄H₂ in methylcyclohexane- d_{14} showed a binomial triplet at -50° C, thus proving the intramolecular nature of the carbonyl averaging process. The single coupling constant of 9 Hz would correspond to the average of those expected for a *cis* molecule; if any *trans* form is present, it would contribute to the average value as well.

The ¹³C NMR of *cis*-Ru(CO)₄H₂ showed stereochemical rigidity on the NMR time scale at -50 and -20° C. Higher temperatures were not attempted because of the low thermal stability of this compound. Similarly *cis*-Os(CO)₄H₂ and *cis*-Os(CO)₄Me₂ were rigid at room temperature and at 90°C.

The room temperature ¹³C NMR spectra of cis-Fe(CO)₄I₂ in toluene- d_8 or CD₂Cl₂ showed two resonances due to the axial and equatorial carbonyl groups. However, when the ¹³C NMR spectrum of cis-Fe(CO)₄I₂ was determined in a mixture of toluene- d_8 and CHCl₃ and no precaution was taken against exposing the sample to the light, a peak at 199.9 ppm was observed in addition to the two resonances mentioned above. It is very likely that this resonance is due to the *trans* isomer of this species. The conversion of cis-Fe(CO)₄I₂ to the *trans* isomer by light has been investigated earlier [23]. An attempt has been made to determine the ¹³C NMR spectrum of cis-Fe(CO)₄I₂ (¹³CO enriched sample in

Fig. 3. Variable temperature ¹³C NMR spectra of cis-Fe(CO)₄H₂ in CD₂Cl₂/CF₂HCl (3/1).

toluene- d_8 solution, degassed and sealed under vacuum) above room temperature. However, the compound decomposed rapidly as the probe was heated to 80° C.

It is interesting to note that a recent electron diffraction study of *cis*-Fe-(CO)₄H₂ [24] showed significant distortion from regular octahedral towards bicapped tetrahedral. This may well be related to the low barrier for carbonyl rearrangement [8].

Experimental section

NMR instrumentation and techniques have been described [6,7]. The ¹H-coupled ¹³C NMR spectrum of cis-Os(CO)₄H₂ was determined using gated decoupling.

Reactions were carried out under an atmosphere of dry, oxygen-free nitrogen or argon. Hydrocarbon solvents were distilled from $LiAlH_4$ and saturated with nitrogen or argon. NMR solvents were dried over type 4A Molecular Sieves.

Carbonyls of ruthenium [25] and osmium [26] were obtained by literature methods. All other starting materials were commercially available and were used as received.

Preparations of cis-Ru(CO)₄H₂ [27], cis-Os(CO)₄H₂ [28], Mn(CO)₅H [29], Re(CO)₅H [30], cis-Fe(CO)₄I₂ [31], and cis-Os(CO)₄Me₂ [32] were carried out according to published procedures.

"Polar night synthesis": preparation of cis-Fe(CO)₄ H_2

Although the preparation of this compound from H_3PO_4 and $Na_2Fe(CO)_4$ has been described recently [33], we give here a modification of an earlier procedure [20], which reduces significantly the reaction time from about five days to 16 h, and affords a very pure sample.

To potassium hydroxide (10 g) and barium hydroxide (13 g) were added water (60 ml) and iron pentacarbonyl (10 ml), under nitrogen. The mixture was degassed by several freeze-thaw cycles at -196° C, and was shaken at room temperature in the dark for 12 h. The resulting slurry was filtered to yield an orange solution. The solution was concentrated to half its original volume under vacuum. From this point on, all operations were performed outside, in the middle of a mild Alberta winter night, when temperatures were around -10 to -20° C. A standard high-vacuum line equipped with a water-cooled mercury diffusion pump operated satisfactorily under these conditions. Apiezon L grease was used on all stopcocks; turning the stopcocks at these temperatures was facilitated by warming them with a heat gun.

The flask with the orange solution containing $Fe(CO)_4H^-K^+$ was attached to the high-vacuum line, and concentrated H_2SO_4 (15 ml) was added dropwise, over 2 h. The volatile materials were fractionated under vacuum using two $-63^{\circ}C$ traps and a $-196^{\circ}C$ trap. The *cis*-Fe(CO)_4H_2 was collected in the $-196^{\circ}C$ trap. The hydride and the solvent were distilled into the NMR tube, and the tube was sealed under vacuum.

The hydride cis-Fe(CO)₄H₂ has been stored in the dark at -196° C, in a tube sealed under vacuum, for up to six months. However, the compound decomposes rapidly above -20° C. Also, exposure of a tube containing cis-Fe(CO)₄H₂

at -196°C to laboratory fluorescent light brought about decomposition as evidenced by the appearance of a red color in 15-30 sec.

Reactions under CO pressure *

Preparation of $cis-Os(CO)_4I_2$

Triosmium dodecacarbonyl (0.5 g, 0.55 mmol), iodine (0.42 g, 1.65 mmol) and benzene (15 ml) were placed in a 200-ml Parr autoclave which was pressurized with CO to 600 psi. The autoclave was heated, with stirring, at 160°C for 13 h, cooled to room temperature, and then the gases were vented. Yellow crystals of cis-Os(CO)₄I₂ separated out, which were removed by filtration and were washed with pentane (15 ml) to yield 0.8 g (87%) of product.

The infrared spectrum of cis-Os(CO)₄I₂ was similar to that reported by others [34], and it showed bands at 2163(1.8), 2100(10.0), 2085(7.3), and 2050(8.5) cm⁻¹ in heptane.

The ruthenium analog, cis-Ru(CO)₄I₂, has been prepared similarly by Dr. R.K. Pomeroy in over 90% yield. The reaction temperature was 100°C. The preparation of this derivative has been described previously [35], but attempts to repeat the synthesis in this laboratory were unsuccessful.

Preparation of $Mn(CO)_5I$

Dimanganese decacarbonyl (1.5 g, 3.85 mmol), iodine (0.976 g, 3.85 mmol) and benzene (15 ml) were placed in a 200-ml Parr autoclave which was pressurized with CO to 550 psi. The autoclave was heated, with stirring, at 130°C for 6 h, cooled to room temperature, and then the gases were vented.

Filtration yielded 0.76 g of ruby-red $Mn(CO)_5I$, which was washed with pentane (15 ml). The librate was evaporated at reduced pressure (10 mmHg) and sublimation (room temperature and 0.005 mmHg) afforded an additional 1.11 g of product (total yield 76%). The infrared spectrum of $Mn(CO)_5I$ [36] showed no impurities.

Earlier this compound was prepared by direct reaction of $Mn_2(CO)_{10}$ with iodine in a sealed Carius tube at 130–140°C [37] or 90°C [38]. The reported yields were lower (50%) [38] and the product was contaminated with $Mn_2(CO)_{10}$.

Preparation of $Re(CO)_{5}I$

Dirhenium decacarbonyl (1.304 g, 2 mmol), iodine (0.508 g, 2 mmol) and benzene (15 ml) were placed in a 200-ml Parr autoclave which was pressurized with CO to 1000 psi. The autoclave was heated, with stirring, at 150°C for 21 h, cooled to room temperature, and then the gases were vented. Filtration afforded 1.38 g of pale-yellow Re(CO)₅I, which was washed with pentane (15 ml). The infrared spectrum [36] of the product showed no impurities. The filtrate was evaporated at reduced pressure (10 mmHg) and sublimation (room temperature and 0.005 mmHg) yielded 0.17 g of product, which contained a small amount of Re₂(CO)₁₀ (total yield 86%).

^{*} The use of moderate CO pressure to improve yields of carbonyl halides is an outgrowth of earlier studies by R.K. Pomeroy (Ph.D. Thesis, University of Alberta, 1972).

Enrichment with ¹³CO

The following compounds were enriched with ¹³CO: cis-Fe(CO)₄I₂ [39], cis-Ru(CO)₄I₂ [40], Mn(CO)₅H [15], Mn(CO)₅I, and Re(CO)₅I. The enrichment of the last two compounds was carried out as described [7], under ultraviolet irradiation in cyclohexane. The irradiation times (140 watt Engelhard—Hanovia Inc. lamp, at 10 cm from the flask) were 30 min and 17 h, respectively.

Acknowledgment

We thank Dr. T.T. Nakashima for helpful discussions and the National Research Council of Canada for financial support.

References

- 1 F.N. Tebbe, P. Meakin, J.P. Jesson, and E.L. Muetterties, J. Amer. Chem. Soc., 92 (1970) 1068.
- 2 P. Meakin, L.J. Guggenberger, J.P. Jesson, D.H. Gerlach, F.N. Tebbe, W.G. Peet, and E.L. Muetterties, J. Amer. Chem. Soc., 92 (1970) 3482.
- 3 P. Meakin, E.L. Muetterties, F.N. Tebbe, and J.P. Jesson, J. Amer. Chem. Soc., 93 (1971) 4701.
- 4 P. Meakin, E.L. Muetterties, and J.P. Jesson, J. Amer. Chem. Soc., 95 (1973) 75.
- 5 T. Kruck and R. Kobelt, Chem. Ber., 105 (1972) 3772.
- 6 L. Vancea, M.J. Bennett, C.E. Jones, R.A. Smith and W.A.G. Graham, Inorg. Chem., 16 (1977) 897.
- 7 L. Vancea, R.K. Pomeroy, and W.A.G. Graham, J. Amer. Chem. Soc., 98 (1976) 1407.
- 8 R.K. Pomeroy, L. Vancea, H.P. Calhoun, and W.A.G. Graham, Inorg. Chem., in press.
- 9 L. Vancea and W.A.G. Graham, Inorg. Chem., 13 (1974) 511.
- 10 L.J. Todd and J.R. Wilkinson, J. Organometal. Chem., 80 (1974) C31.
- 11 H. Beall, C.H. Bushweller, W.J. Dewkett and M. Grace, J. Amer. Chem. Soc., 92 (1970) 3484.
- 12 L.J. Todd and J.R. Wilkinson, J. Organometal. Chem., 77 (1974) 1.
- 13 M.J. Webb and W.A.G. Graham, J. Organometal. Chem., 93 (1975) 119.
- 14 F.J. Weigert and J.D. Roberts, unpublished results, quoted in ref. 17.
- 15 G.M. Whitesides and G. Maglio, J. Amer. Chem. Soc., 91 (1969) 4980.
- 16 G.C. Levy and J.D. Cargioli, J. Magn. Res., 6 (1972) 143;
- 17 D.A. Redfield, J.H. Nelson and L.W. Cary, Inorg. Nucl. Chem. Lett., 10 (1974) 727.
- 18 E.W. Garbisch, J. Chem. Educ., 45 (1968) 402.
- 19 R.K. Pomeroy, L. Vancea, and W.A.G. Graham, unpublished results.
- 20 K. Farmery and M. Kilner, J. Chem. Soc. A, (1970) 634.
- 21 S.R. Stobart, J. Chem. Soc., Dalton Trans., (1972) 2442.
- 22 G.F. Bradley and S.R. Stobart, J. Chem. Soc. Chem. Commun., (1975) 325.
- 23 K. Noack, Helv. Chim. Acta., 45 (1962) 1847; M. Pankowski and M. Bigorgne, J. Organometal. Chem., 19 (1969) 393.
- 24 E.A. McNeill, Ph.D. Thesis, Cornell University, 1975.
- 25 M.I. Bruce and F.G.A. Stone, J. Chem. Soc. A, (1967) 1238.
- 26 B.F.G. Johnson, J. Lewis, and P.A. Kilty, J. Chem. Soc. A, (1968) 2859.
- 27 J.D. Cotton, M.I. Bruce, and F.G.A. Stone, J. Chem. Soc. A, (1968) 2162.
- 28 F. L'Eplattenier and F. Calderazzo, Inorg. Chem., 6 (1967) 2092.
- 29 R.B. King, Organometal. Syn., 1 (1965) 158.
- 30 W. Beck, W. Hieber, and G. Braun, Z. Anorg. Allg. Chem., 308 (1961) 23.
- 31 W. Hieber and G. Bader, Chem. Ber., 61 (1928) 1717.
- 32 R.D. George, S.A.R. Knox, and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1973) 972.
- 33 M.A. Schroeder and M.S. Wrighton, J. Amer. Soc., 98 (1976) 551.
- 34 L.A.W. Hales and R.J. Irving, J. Chem. Soc. A, (1967) 1389.
- 35 B.F.G. Johnson, R.D. Johnston, and J. Lewis, J. Chem. Soc. A, (1969) 792.
- 36 H.D. Kaesz, R. Bau, D. Hendrickson, and J.M. Smith, J. Amer. Chem. Soc., 89 (1967) 2844.
- 37 E.O. Brimm, M.A. Lynch, Jr., and W.J. Sesny, J. Amer. Chem. Soc., 76 (1954) 3831.
- 38 K.J. Reimer and A. Shaver, J. Organometal. Chem., 93 (1975) 239.
- 39 I.S. Butler and H.K. Spendjian, J. Organometal. Chem., 18 (1969) 145.
- 40 R.S. Gay, Ph.D. Thesis, University of Alberta, 1970.